
?
REPORT DOCUMENTATION PAGE OLU TIOovS

PIN MANWY-OD PROBLEMfft S Mt to PWE6 I 02F OW rWie.'. E6W" the URNs Wor mmw" mf"no foq M
i~~mrnMW Fd~ U wi ~u~A MrW~ tilS coomone of i~Wo PAUO teedwrniw IU..wIwwAA OOVHW O

. t S m. 2304/A4 Wr~lai tibdilt b~ptalwdufwIWw

"AENO USEoal (L&Wb6lmaI 1,? REPORT DATE IM RPORT TYPE AND DATE$ COVERED
C\ May 31, 1981 Tinal (June 1, 80- May 31, 1981
MUB AND SOuim $. PUNOWG NUMBERS

EFFECTS OF BOUNDARIES AND COLLISIONS IN THE THEORY OF

Ln SOLITON AND QUANTUM SOLITIONS AND STRANGE SOLUTIONS
__ IN MANY-BODY PROBLEMS PE61 102F

AUTHORMS 2304 /A4

I D.C. Mattis

PENSING ORGANIZTIOf NAM(S) AND ADORES(ES) &. PERFORMING ORGANIZATION

University of Utah 
REPORT NUMBER

r Physics Department

Salt Lake City, Utah 84112 "M *-M, 8 9 1 3

g. SPONSOMGIMONITOMING AGENCY NAME(S) AND AOOPESS(ES) 1. SPONSORNG /IMONITOING
AGENCY REPOR NUMBER

AFOSR
BLDG 410

BAFB DC 20332-6448 AFOSR80-0257

11. SUPLUMENTAMY NOTES

12a. DiSTRUBflON IAVAILAUIUT STATEMENT INb OIYRISUToiO cooE

1. ABSTRACT (Maxkmm 200 womi
.... This research in mathematical physics concerned the fundamental structure of two-

dimensional quantum field theory, dealt with the interactions of a particle with

a field (the magnetic polaron"), with application to the production of spin-

polarized particles from thin foils. Finally, new work on an exactly soluble

antiferromagnet: an exact quantum mcchanical ground statp and two phases identifie

one with long range order and the other, a 'quantum liquid.
'' Other work in

mathematical physics included renormalization group studies of certain magnetij

systems. DTIC
S ELECTE

DEC05 199I

14. SUBJECT TERMS IS. NUMBER OF PAGES
17

1L PRICE COO

17' SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMTATION OF ABSTRACT

OF REPORT OF THIS PAGE Of ABSTRACT

unclassified unclassified I

..N 7540O.0-50 Standard Form 296 (890104 Draft)

89n 12Mfts. .



INTERIM SCIENTIFIC REPORT FOR PERIOD ENDING 31 MAY, 1981

Grant AFOSR 80-0257

(University Account 36031)

"ffects of Boundaries and Collisions with Theory of Solitons,"

and

"Quantum Solitons and Strange Solitons in Many-Body Problem"

Principal Investigator

D.C. Mattis, Ph.D.
Professor of Physics

Department of Physics
University of Utah Aooesslon For

Salt Lake City , Utah 84112 - --- .iST RA&I -
DTIC TAB T.
Unennounood
Just ifloeton .

By
Distributiom/
Availability Codes

Ava I i and/odr
D~st Special



2

Abstract

This research in mathematical physics had several consequences. Some of

the work concerned the theory of electrons and the fundamental structure of

two-dimensional quantum field theory. It also dealt with the interactions of

a particle with a field (the "magnetic polaron"), with possible application

to the production of spin-polarized particles from thin foils. Finally, much

new work was developed on an exactly soluble model antiferromagnet: an exact

quantum mechanical ground state was obtained and two possible phases iden-

tified one being the usual (with long range order) and the other, a model

"quantum liquid." Other work in mathematical physics was initiated, e.g.,

renormalization group studies of certain magnetic systems.
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Statement of Work Done and Personnel

A large number of research projects were launched in this, the first

year of our Air Force sponsored research in mathematical physics at the

University of Utah.

The list of personnel in our research group, directly or indirectly

in !9S0-81 includes the following:

P.I. D.C. Mattis, Ph.D.

B. Sutherland, Ph.D.

B.S. Shastry, Ph.D.

John Bruno, Ph.D.

Consultants D. Campbell, Ph.D.

R. Raghavan, Ph.D.

R. Schilling, Ph.D.

Student M. Farid, B.S.

Much of the work has neen written down and submitted for publication. Only

a small fraction has actually appeared. But among these publications was

300 page book:

"The Theory of Magnetism, I: Statics and Dynamics" by D.C. Mattis
(Springer, 1981).

An encyclopedia article:

"Many-Body Theory" by D.C. Mattis, pp. 567-572 in Encyclopedia of
Physics, Lerner and Trigg, Eds., Addison-Wesley, 1981.

Some conference proceedings (16th International Conference LT-16):

"Exact Green Functions in Magnetic Semiconductors," B.S. Shastry and
D.C. Mattis, p. 73, Vol. 107, Physica B + C.

"Quantum Percolation in Dilute Lattice of Various Dimensionality,"
D.C. Mattis and R. Raghavan, ibid, p. 671.
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"Exact Ground State of a Quantum-Mechanical Antiferromagnet," B.S.
Shastry and B. Sutherland, -2id, p. 1069.

and regular publications:

"Eigenfunction Localization in Dilute Lattice of Various Dimension-
alities," R. Raghavan and D.C. Mattis, Phys. Rev. B23, 4791 (1981).

"Strange Solution to Field Theory in One Spatial Dimension," D. Mattis f
and B. Sutherland, J. Math. Phys. (Summer 1981).

"Ambiguities with . elativistic Delta-Function PotenLial," B. Sutherland
and D.C. Mattis, Phys. Rev. A (in press).

"Theory of the Magnetic Polaron," B. Shastry and D.C. Mattis, Phys. Rev.
B (in press).

"Failure of Renormalization Group Method in Semiclassical Limit," D.C.

Mattis and R. Schilling, J. Phys. (Letters) (in press).

We now list a number of papers in progress, together with explanatory abstract.

Phase Transition in the Two-Dimensional Frustrated x-y Model: Scaling

Equations, B. S. Shastry. We establish scaling equations for the two-

dimensional x-y model with weak frustration using the electrostatic

analogy of Kosterlitz and Thouless. In the limit of small disorder we

find a shift in the critical temperature

T (x) - T (0) _Jx [2 72
S-- 2 zn 2x
B

and the exponents are unchanged from the pure values.

Phase Transition in Diluted Two Dimensional X-Y Model, B.S. Shastry and

J. Bruno. In recent letter Jose has used the replica technique to

investigate a randomly diluted ferromagnetic two dimensional (2-D) X-Y

model described by the Hamiltonian H = - 1 Jij cos(ei - ej) where the
<ij>

Jij's are random variables (> 0) and <ij> is a sum over nearest neighbor

pairs. He concludes that the model undergoes a Kosterlitz-Thousless

(K-T) transition in a manner analogous to the pure case, and finds that

for a certain range of the disorder parameter x, the transition temper-
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ature Tc(x) exceeds the pure value Tc(O). We find this result surprising.

Defining Tc(x) as the highest temperature below which the susceptibility

x(x) diverges, it is easy to establish an upper bound on Tc(x) using the

inequality of Griffiths as generalized by Ginibre for the ferromagnetic

diluted X-Y model. Consider the set {Jij} of random bonds and the pure

set {Jij °} where 0 < Jij < Jij °. The inequality alluded to above implies

+ + + +
<S.S >{J} < <Si.Sj>{J °} and summing over i,j and using the fluctuation

dissipation theorem, we find X(x) 4 X(O): Thus Tc(x) 4 Tc(O).

In view of the above we believe that this problem needs reappraisal.

We have considered this problem without the use of the replica 1'=hnique

and have found it possible to perform the standard Villain approximation

followed by a dual tranformation for a given set of quenched (random)

bonds Jij- We find the vortex partition function in the form

Zv = I exp[?'n2/kBt) . mimjGij]

Imi=O,±... <ij>

where Gij is the inverse of the matrix

Hij : (i/ Ji,)[i,j - 6 'J6irij ,ll

and Tij is the bond variable in the original lattice which is cut by the

bond joining the dual lattice sites i and j.

Spin Dynamics of the Long-Ranged Ising Sping Glass, B.S. Shastry. An

analytical theory of the spin dynamics of the long-ranged Ising spin

glass model is proposed using the inverse of the coordination number as

an expansion parameter. In equilibrium the theory reduces to that pro-

posed by Thouless, Anderson and Palmer. Power law decays of the duto-

correlation function (I/t112 ) and remanent magnetization ( li/t 31 2 ) are

obtained for all T < Tc.
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Excitation Spectrum of a Dimerized Next-Neighbor Antigerromagnetic Chain,

B.S. Shastry and B. Sutherland. We study the excitation spectrum of an

antiferromagnetic chain exhibiting both the effects of dimerization and

frustration. Our method is based on an exact solution for the doubly

degenerate ground state, and views the excitations as propagating defect

boundaries betweerr-the two exact ground states. These excitations are

analogous to "solitons"; 'nd can bind into a second type of excitation,

analogous to "breathers."

Exact Solution of a Large Class of Interacting Quantum Systems Exhibiting

Ground State Singularities, B. Sutherland and B.S. Shastry. We demon-

strate how to construct a large class of interacting quantum systems for

which an exact solution may be found for the ground state wave function

and ground state energy for some range of interaction parameters. It is

shown that the ground state exhibits singularities in these cases, and in

some instances the exact ground state phase diagram and critical indices

are also found.

Comment on Ordering in Multicompo6ent Systems, B. Sutherland. This paper

demonstrates that the conclusions arrived at on the possibility of multi-

polar ordering in the exchange-interaction model of ferromagnetism by

Chen and Joseph in a paper of the same title are not justified.

Nonuniversal Equation of State for Random Uniaxial Dipolar Ferromagnets

at Marginal Dimensionality, J. Bruno and C. Vause. The critical behavior

of a random uniaxial dipolar ferromganet is determined in the range of

reduced temperatures tx << Iti << 1, where tx is a "crossover" temperature

whose origin is in a particular symmetry (at leading order only) in the

scaling equations of the fluctuation theory. The (internal) magnetic



7

susceptibility, specific heat, equation of state and spontaneous magne-

tization all show nonuniversal behavior with concentration dependent

exponents in this region. Comparison with recent experiments on the

random uniaxial dipolar ferromagnet LiTbl_pYpF 4 is given.

Failure of Renormalization Group Method in Semiclassical Limit, D.C.

Mattis and Rolf Schilling. We compute the ground state energy of an

Heisenberg linear chain antiferromagnet for spins s = 1/2,1,...,- by

a block spin renormalization method. Although this method yields

reasonably accurate results in the quantum limit s = 1/2, in the semi-

classical limit [where significant parameter in the asymptotic expansion

eo = -Js2(1 + y/2s + 0(1/2)2) is known to be y = 0.7] the RG procedure

yields y = 0, a highly unsatisfactory result.

Does a Charged Defect Trap anExciton, Does the Hydrogen Atom Bind a

Positron? M. Farid and D.C. Mattis. We review the binding of a positron

to a neutral hydrogen, or the binding of an exciton to a charge defect

center. Our upper bound is compared to Armour's lower bound. One general

conclusion: If the mass ratio of the mobile particles is close Lo 1 (in

the range 2/3 - 3/2) the exciton can never be bound to a singly charged

center of either sign, whether positive or negative. If the mass ratio

eAceeds approximately 3/2, the exciton can be bound a fixed singly charged

center of the same sign as the more massive mobile particle.

The "Strange Solutions and other Quarks of Quantum Field Theory" were the

subject of a special report to the Air Force, which we reproduce herewith.
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SPECIAL REPORT TO

Dr. Robert N. Buchal
AFOSR

STRANGE SOLUTIONS AND OTHER QUIRKS OF QUANTUM FIELD THEORY

D. C. Mattis
Physics Department, University of Utah

Salt Lake City, Utah 84112

6 April, 1981

I. INTRODUCTION

Quantum field theory--the fundamental study of elementary particles--

and condensed matter physics presently share many of the same mathematical

techniques and solutions I . That is, vastly different problems are found to

lead, ultimately, to equations that are surprisingly similar and allow a

common method of solution. "Solitons" are an example of features appearing

both in QFT as well as in such mundane stuff as polyacetylene!2

Our work3 concerns certain ambiguities which exist in the mathematics

and which can only be resolved by a correct physi¢cl Interpretation. There

are two principal applications.

(1) Calculations of ground state and elementary excitations of many-

fermion systems, and

(2) the nature and effect of short-range interactions.

Concerning the first, we find that in typical model problems there exist two

classes of solutions, the physically acceptable ones and the "strange solutions"

which we have newly identified3. It is even possible, in a given, fairly

complex problem, to concoct solutions that are partly "strange" and partly

the result of acceptable manipulations; ths combination being, of course,
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just as unacceptable.

Concerning the second application, we find that the delta function inter-

actions suitable to condensed matter physics are of the "separable" variety,

whereas those suited to QFT are the "local" variety, and that there exist in

addition an infinite number of other varieties. .hat makes this important is

that each variety leads to a different set of eigenstates. The phase shifts

for the scattering, and the nature of the bound states, ali depend sensitively

on the precise choice of functional form, and on certain limiting processes.

The mathematical-physics literature is a mass of confusion over these

issues. Many workers, solving a common model hut using different cut-off

procedures, will arrive at a different answer. Othars will converge onto a

"strange" solution. One example is the "massive Thirring model" of QFT.

Almost every attempt at solution4 has met with a disproof5 until, recently,

when a complete, explicit solution was proposed for this knotty problem: all

the eigenstates and eigenvalues are in principle capable of being extracted

from this solution6. But it is our present belief that this is in the nature

of a "strange", unacceptable solution. This is not an academic point; strange

solutions will not have acceptable physical properties, a3 will not concord

wNth ' atire where such comparisons can be made. In condensed-matter physics,

there are breakthrough claims in the knotty Kondo problem7. Such solutions

will not he valuable, and will not permit useful comparison with experiment,

if they contain a partly "strange" component.

Why have these difficulties not heen identified earlier? In condensed

matter physics, they arise only when the kinetic energy operator is "linearized",

i.e. -d2/dx2  is replaced by ± ivFd/dx , as is appropriate only for particles

at the Fermi level kF. In QFT, these problems cannot arise when the Fermi

sea is properly filled, and diagrammatic perturbatiun theory is used to solve



12

the problems of interacting particles. It is only the fairly modern attempts

at algebraic, closed-form solutions that can give rise to ambiguities or wrong

answers.

IT. STRAN'E SOLUTIONS

Ile illustrate by the simplest model of spinless fermions in one dimension,

all moving at a common speed vo . There exists no particularly interesting

apolication of this model; it is only used to highlight the difference between

acce2.t: ...e and "strange" solutions. Assuming an interaction potent4 ,

V(xi-, , the Scrrodiner equation takes the form

- 'o + , (xn-xm)] :(x1,...) = El(xi,...)

3ecause this is a first-order p.d.e. and is linear in the wave-function

I,. . .. ) , it is possible to solve this equation in closed form; we shall

give :nis result below. This is, however, th2 "strange" solution. The

reason: the differential operator above is ill-defined. In particular, it is

possihie to find w;ave-functions with sufficient "wiggles" to make -

Thus, the Hamiltonian has no ground state, every state we obtain is an

infinitely high excited state. In mathematical terms, we are in the wrong

Hilbert space. In physical terms, we have no chance of obtaining the correct

normal modes of the system, which are near the ground state. All solutions

of the equation above take the form:

ikxI

,(xl,...) = e r6(xn+1 - xn - rn) , E = k + V(rn,n)
n n,m

The rn's are fixed parameters, indicating fixed separation on the particles.

It is easy to adapt this solution to the Pauli principle but not to the
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uncertainty principle. If we know the position of one particle, we know them

all!

The construction of a correct solution starts with Figure 1. We first

fill the Fermi sea (down to k's of - -); this brings us into an acceptable

Hilbert space, which has a ground state (filled F.S.), and elementary excita-

tions (particle above F.S., hole below). One can either sum the diagrammatic

perturbation theory on thp potentials or solve the problem algebraically 3 .

The results are: the ground state energy is modified, and the spectrum of

elementary excitations is modified; the qth normal mode propagates at a

suitably renormalized speed vo(l+Vq) , where Vq is the Fourier transform

of V(x)

Fig. 1. The procedure of filling the F.S. eliminates the possibility of
particles at large negative k being scattered, but changes the
dynamic nature of the forces.
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The first method is wrong, because the problem makes no sense for a

finite number of particles. If we tried to modify it to make sense--e.g. b,

introducing a cutoff at - kc , the Schrodinger's equation is properly no

longer a first-order p.d.e., and we can no longer solve it conveniently. On

the other hand, the procedure first discovered by Fermi and Dirac, of filling

the Fermi sea, leads to a proper solution without the use of any cut-offs.

Again we can speak of a finite number cf prtiicles--but they are holes below,

the FS and electrons dbove.

In condensed-matter theory applications, the linearization of the

kinetic energy is not a consequence of relativity, but is a mere mathematical

simplification that the theorist makes to render the many-body problem more

tractable. It is then especially important that non-physical processes,

occurring at large negative energies, not be allowed to take place.

A peculiar symptom of "strange solution' is that the interactions can be

"gauged away". That is, if we have two colliding particles as in

[- id/dx + id/dy + V(x-y)](x,y) = E (x,y)

x-y

we can write i in the foi [exp -1 i f dx'V(x')}]4(x,y) , we find that

€ satisfies the equation:

[- id/dx + id/dyl(x,y) = Eo(x,y)

with the same E as above. Thus, the interaction has no tangible, dynamic

effect! The correct version of the above cannot even be formulated for two

particles. If we fill the F.S. first, we obtain quite a different problem,

and an entirely different set of solutions. If we do not, but merely modify

the kinetic energy as in



13

[- d2/dx2 - d2/dy2 + V(x-y)]p = E(x,y)

we cannot then "gauge away" the interaction. Either way, we ca.inot reconcile

the "strange solution".

It seems as though the hallmark of "strange solutions" is the "gauging

away" of difficult interaction terms. This can only be done for linearized

kinetic energies, when the F.S. is not filled correctly. We are examining

the published "breakthrough" solutions6 ,7 for evidence of this subtle, but

damaging, error.

III. TWO DELTA FUNCTIONS

We illustrate this topic by a simple example. First the well-known

theorem:

6(x)6(x-y) = 6(x)6(y) . (1)

Actaully, the l.h.s. of this equation represents a local potential V(x) in

the delta-function limit, where as the r.h.s. is a separable potential, also

in the delta-function limit. In problems involving second-order differential

operators, the two are, indeed, identical. This is because the wavefunctions

are constrained to be continuous. In problems, such as those of QFT, where

the differential operators are first-order, the wave functions become

discontinuous at the delta-function singularity. The two forms in Eq.(1)

then yield different results. They are sketched in Fig. 2.



14

(

Fig. 2. (a) local (b) nonlocal. Limit E-. 0 must be taken. An number
of other shapes are possible, each with different results.

(a) Local. We solve

- id/dx 4(x) + ga(x) f dy 6(x-y) (y) = E (x)

and obtain:

-ie(x) + iEx¢Z(x) = e
1 1

where 8(x) - 2 g for x < 0 and + 1 g for x > 0. It may be verified

by direct substitution.

(b) Non-local. We use the separable form, r.h.s. of (1).

- id/dx 9(x) + g6(x) f dy 6(y)9(y) = E¢(x) .

This has the solution, also verifiable by direct substitution,
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Oh.x.(x) = eiEX(l-iOx,<)) (x00), and (O) = I

with 8(x) defined as above. Equivalently,

n.z.(x) = e- i X(x) + iEx

with X(x) = - tan- I  g for x < 0 and +tan -I  g for x > 0
22

The two versions agree only for small g. At g 2m x integer , the local

solution is perfectly continuous at the origin, whereas the nonlocal version

remains highly discontinuous. Both have transmission coefficients of unity,

and are examples of the "gauging away" of interactions that we criticized in

the preceding section.

The practice of introducing cut-off into singular interactions leads to

behavior intermediate between the extremes of local and separable; thus in a

number of research projects, it has been possible for the investigator to

obtain any answer he desires, merely by "massaging" the interaction into a

form which yields a desired result . Our present concern is with finding a

procedure which will yield invariant and physically admissible results for

short-range forces.
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FOOTNOTES

1. For examples, ITP at Santa Barbara is sponsoring a workshop on "Common
Problems" this summer.

2. W. P. Su and J. R. Schrieffer, Phys. Rev. Lett. 46, 738 (1981);
B. Horovitz, ibid., 742.

3. Our interest dates back to D. Mattis and E. Lieb, J. Math. Phys. 6, 304
(1965). (See also Chap. 4 in Lieb and Mattis, "Mathematical PhysTcs in
One Dimension, Academic Press, New York, 1966.) Recently: D. Mattis
and B. Sutherland, "Strange Solutions", J. Math. Phys. (in press), and
papers being submitted.

4. Typically, an attempt to guess at the S-matrix by F. Berezin and V.

Sushko, JETP, Sov. Phys. 21, 865 (1965).

5. Shot down by P. Hahlen, Nucl. Phys. B102, 67 (1976).

6. H. Bergknoff and H. Thacker, Phys. Rev. D19, 3666 (1979); and Revs. Mod.
Phys. (in press).

7. N. Andrei, Phys. Rev. Lett. 45, 379 (1980); P. Wiegmann, Pisma v. JETP
31, 392 (1980); Fateev and WTigmann, Phys. Lett. 81A, 179 (1981).



We enjoyed the consultative services of several visitors, including Drs.

D. Campbell (Los Alamos) and R. Raghavan (Riverside Research Institute, New

York). Papers were presented at 1st Intermountain West-Southwestern Tech-

nical Physics Conference, held at Los Alamos in March 1981. The second

annual meeting is scheduled for March 1982 under the general direction of

D.C. Mattis.


